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ABSTRACT

We introduce GaussianMorphing, a novel framework for semantic-aware 3D
shape and texture morphing from multi-view images. Previous approaches usually
rely on point clouds or require pre-defined homeomorphic mappings for untex-
tured data. Our method overcomes these limitations by leveraging mesh-guided
3D Gaussian Splatting (3DGS) for high-fidelity geometry and appearance model-
ing. The core of our framework is a unified deformation strategy that anchors 3D
Gaussians to reconstructed mesh patches, ensuring geometrically consistent trans-
formations while preserving texture fidelity through topology-aware constraints.
In parallel, our framework establishes unsupervised semantic correspondence by
using the mesh topology as a geometric prior and maintains structural integrity via
physically plausible point trajectories. This integrated approach preserves both lo-
cal detail and global semantic coherence throughout the morphing process with-
out requiring labeled data. On our proposed TexMorph benchmark, GaussianMor-
phing substantially outperforms prior 2D/3D methods, reducing color consistency
error (AE) by 22.2% and EI by 26.2%. Project page: https://baiyunshu.
github.io0/GAUSSIANMORPHING.github.io/

1 INTRODUCTION

Morphing (Gregory et al.l|1998;[Zhang et al.,[2024a) has long been a foundational technique in shape
transformation, enabling the generation of continuous interpolation sequences between source and
target shapes. Serving as a bridge between computer vision and computer graphics, morphing has
emerged as an indispensable tool for applications spanning computer animation, geometric model-
ing, and shape analysis. Its prominence in visual effects for film and media production further un-
derscores its practical significance.

Existing morphing techniques can be broadly categorized into two paradigms: image-based meth-
ods (Aloraibi, 2023; Zhang et al., [2024a)) and 3D geometric methods (Eisenberger et al., 2021;|Yang
et al., 2025} |Cao et al, 2024)). As summarized in Figure E], these approaches exhibit fundamental
trade-offs. Image-based pipelines, such as DiffMorpher (Zhang et al.| 2024b) and FreeMorph (Cao
et al., 2025), produce high-fidelity 2D outputs but lack 3D geometric reasoning and multi-view con-
sistency. Extensions like MorphFlow (Tsai et al.| 2022)) leverage Neural Radiance Fields (NeRF) to
address view consistency but are limited by the absence of explicit 3D geometric constraints, result-
ing in incomplete volumetric reconstructions (denoted as 2.5D* in Figure[I)). In contrast, 3D-centric
methods such as Neuromorph (Eisenberger et al.l|2021) enable mesh-based deformation but require
high-quality mesh inputs, neglect texture-aware processing, and struggle with topological complex-
ity. These limitations highlight a critical gap: the lack of a unified framework that balances geomet-
ric robustness, textural coherence, and input accessibility without reliance on high-fidelity 3D data,
which remains a key challenge for advancing morphing techniques toward practical and general-
purpose applications.
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Figure 1: Our GaussianMorphing (left) takes input images of the source and target, reconstructs
them into 3D Gaussian representations with surface meshes, and uses a mesh-guided strategy to
generate intermediate shapes at timestamps ¢ € [0, 1]. Unlike prior approaches, our method achieves
Semantic-Aware Object Morphing with textured colors without relying on 3D input data. The com-
parison table (right) shows that our method uniquely generates fully textured 3D outputs directly
from images, offering complete geometric and textural fidelity.

To address this gap, this work introduces the first framework for joint 3D geometry and texture mor-
phing using 3D Gaussians, where shape and appearance are intrinsically unified (Figure[I). The key
challenge lies in achieving coherent deformation with Gaussian representations due to their unstruc-
tured nature and the complexity of maintaining geometry-texture alignment. Our solution integrates
the rendering efficiency of 3D Gaussian Splatting (3DGS) (Kerbl et al., |2023)) with the structural
benefits of mesh-guided deformation. The approach establishes explicit bindings between 3DGS
primitives and mesh elements, enabling smooth interpolation while preserving geometric and tex-
tural fidelity. Through mesh feature extraction and topological constraints, the method ensures sta-
ble morphing sequences that resist the geometric fragmentation typical of discrete point representa-
tions. A dual-domain optimization strategy employs geodesic-based geometric distortion loss and
texture-aware color smoothness loss to govern deformation, ensuring temporal coherence from ac-
cessible 2D inputs without requiring specialized 3D assets.

The proposed framework bridges discrete 3DGS points with semantic-aware mesh structures,
achieving significant improvements over state-of-the-art methods in geometric accuracy and tex-
ture preservation. Experiments demonstrate robust performance across diverse scenarios, including
complex topologies and texture-rich objects, while reducing dependency on high-quality 3D data.

The main contributions are:

(1) A mesh-guided framework that integrates 3D Gaussian Splatting with semantic-aware morphing,
enabling high-fidelity 3D interpolation from minimal inputs;

(2) Deformation mechanisms that are aware of both topology and semantics, preventing geometric
fragmentation and ensuring stable, coherent morphing in Gaussian-based representations;

(3) A dual-domain optimization strategy combining geodesic-aware geometric constraints and
texture-aware color interpolation that achieves seamless visual results.

2 RELATED WORK

2.1 IMAGE MORPHING

Image morphing is a long-standing problem in computer vision and graphics, aiming to generate
smooth and perceptually natural transitions between images (Aloraibi, 2023} Zope & Zopel |2017;
Wolberg, |1998). Traditional methods (Beier & Neelyl 2023; Bhatt, 2011} Liao et al., [2014) rely
on correspondence-driven warping and blending, which preserve visual consistency but struggle
with content creation, often leading to artifacts. More recently, optimal transport has been applied
to morphing simple 2D geometries (Benamou et al., 2015} |Bonneel et al., 2011; |Solomon et al.,
2015)), providing mathematically elegant transformations but lacking the texture richness of natural
images. Diffusion-based approaches such as DiffMorpher (Zhang et al., [2024b)), AID (He et al.,
2024])), and FreeMorph (Cao et al., |2025) leverage pre-trained generative models to enable flexible



morphing across diverse categories. In this work, we instead start from multi-view inputs, alleviating
the need for large-scale pre-training and producing intermediate mesh-based representations that
support shape-aware and texture-consistent 3D morphing.

2.2  SHAPE MATCHING

The problem of 3D shape correspondence aims to establish point-wise mappings between shapes
and has been widely studied. Traditional methods rely on geometric constraints (Holzschuh et al.,
2020; [Roetzer et al., [2022) or non-rigid registration (Bernard et al., [2020; [Eisenberger et al., 2019;
Ezuz et al., 2019), but often require costly optimization and manual alignment, limiting scalability.
Recent learning-based approaches have advanced the field by training networks to match vertices to
a template (Monti et al., 2017 [Boscaini et al.|[2016;|Masci et al.,[2015)), or by leveraging functional
maps with learnable features (Litany et al.| 2017} Ovsjanikov et al.l 2012). Others integrate spectral
and spatial cues (Cao et al.| [2024; |Attaiki & Ovsjanikovl 2023)), use diffusion models for functional
map prediction (Zhuravlev et al., [2025), or apply 2D correspondence priors to improve semantic
consistency in 3D registration (Liu et al.| 2025). Our method, with the assistance of neural networks,
eliminates the need for costly 3D inputs and data annotations. By employing object reconstruction
techniques, it derives geometric point-wise correspondences from images.

2.3  SHAPE INTERPOLATION

Shape interpolation addresses the fundamental challenge of smoothly transforming one shape into
another by generating intermediate shapes at specified composition percentages. Traditional geo-
metric methods (Brandt et al.,2016; Heeren et al., 2012 Wirth et al., 201 1) formulate this as finding
geodesic paths on high-dimensional manifolds, employing deformation metrics like As-Rigid-As-
Possible (ARAP) (Sorkine & Alexa, [2007)) and PriMo (Botsch et al., 2006) to minimize local dis-
tortions. Data-driven approaches alternatively navigate through collections of related shapes (Ay-
dinlilar & Sahillioglu, 2021} |Gao et al., [2017), while physics-based methods model interpolation as
constrained gradient flows (Eisenberger & Cremers}[2020; Eisenberger et al.,[2019). MorphFlow ex-
emplifies this approach by combining Wasserstein flow with rigidity constraints for multiview mor-
phing (Tsai et al., 2022). Recent neural approaches have advanced unsupervised shape interpola-
tion. NeuroMorph (Eisenberger et al., [2021) and Spectral Meets Spatial (Cao et al.l 2024) demon-
strate effective frameworks for shape matching and interpolation, with the latter incorporating spec-
tral regularization for handling large non-isometric deformations. Other methods utilize 2D corre-
spondence guidance (Liu et al.| |2025) or diffusion priors for textured morphing (Yang et al., [2025).
Our method combines geodesic distance measurements with ARAP constraints, utilizing a neural
network-based interpolator to achieve smooth deformation from source to target shapes.

3 MESH-GUIDED GAUSSIAN MORPHING

Given source and target objects represented by multi-view images, we propose a semantic-aware 3D
morphing framework that addresses a fundamental challenge: achieving geometrically consistent
transformations while preserving photorealistic surface details. The core problem is that modern
explicit representations present a trade-off: 3D Gaussian Splatting (3DGS) (Kerbl et al.l |2023) lacks
the topological connectivity needed for structured morphing, while traditional meshes struggle to
model complex appearance.

As shown in Figure [2} Our framework, Mesh-Guided Gaussian Morphing, resolves this tension by
introducing a novel hybrid paradigm. Our key insight is to impose an explicit triangular mesh as a
topological scaffold to guide the transformation of unstructured Gaussians. By anchoring Gaussians
to this mesh, we can leverage powerful mesh-based correspondence techniques to establish semantic
connections. This allows us to compute a geometrically consistent morphing flow in the structured
mesh domain while using the rich Gaussian representation for photorealistic rendering at any point
in the transformation.
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Figure 2: Method Overview. Our GaussianMorphing framework takes source X" and target )
images as input. Surface meshes are extracted from 3D Gaussian Splatting (Sec. [3.I)) and used with
Gaussian points for geometry—texture alignment. Geometric features provide the correspondence
matrix IIxy (Sec. , and intermediate shapes are interpolated over time. Training relies on a
joint loss (Sec. @%ielding high-quality textured 3D morphing. (Up: Blender results; Down:
correspondence visualization with Matplotlib.)

3.1 HYBRID MESH-GAUSSIAN REPRESENTATION FOR SEMANTIC MORPHING

The Connectivity Challenge in Gaussian-Based Morphing. 3DGS represents a scene as a set
of anisotropic 3D Gaussians, which can be optimized to reproduce a set of input images, enabling
photorealistic novel-view synthesis. Each Gaussian g is defined by its position y, € R?, covariance
Yg, opacity a4, and spherical harmonics (SH) coefficients sh,. While excellent for rendering, the
discrete, unstructured nature of these Gaussians prevents the establishment of meaningful semantic
correspondences between objects. A direct Gaussian-to-Gaussian matching would likely produce
geometrically implausible results that tear or distort the structure of the object.

Mesh-Anchored Gaussian Binding. To overcome this limitation, we impose a topological structure
by anchoring Gaussians to an explicit mesh. First, we extract a high-quality initial mesh from
the optimized Gaussians. We follow recent methods like SuGaR (Guédon & Lepetit, [2024b) and
FrostingGaussian (Guédon & Lepetit, [2024a), which use Poisson reconstruction (Kazhdan et al.)
2006) alongside regularization terms to ensure the mesh surface accurately reflects the geometry
captured by the Gaussians.

With this mesh scaffold, we establish an explicit binding between the Gaussians and the mesh faces.
Each Gaussian is anchored to a specific triangular face f = (Vi, V3, Vi), with its position 4 defined
by barycentric coordinates (w, w2, w3) and a normal offset d:

tg = w1 Vi +waVo +wsVs +d - ny, (1

where n; is the face normal. This binding ensures that as the mesh vertices V; deform over the
course of the morph, the anchored Gaussians move cohesively with the surface, preserving the fine-
grained geometric and appearance details they represent.

3.2 SEMANTIC CORRESPONDENCE THROUGH TOPOLOGICAL UNDERSTANDING

Semantic-Aware Mesh Correspondence. With the mesh structure established, we can tackle the
core challenge of identifying which part of the source object should transform into which part of
the target. We formulate this as a correspondence problem between the source mesh (V¥ F¥) and
target mesh (V7' FT). The correspondence is encoded as a probabilistic matrix IT € R™*™:
exp(oc¢;;)
;= PV | V¥) = < 2 2)
AR » ey
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where c;; is the cosine similarity between learned feature vectors for source vertex V% and target
vertex V:I'. To learn semantically rich features, we use a 5-layer Graph Convolutional Network
(GCN) that processes mesh connectivity, allowing it to capture local geometric context without
relying on hand-engineered descriptors.

Neural Morphing Flow. Rather than simple linear interpolation, we learn a continuous, non-linear
deformation field. We employ a neural network, the Correspondence Morphing Flow (¥), to predict
the morphing trajectory. At any time ¢ € [0, 1], the morphed source vertices V°(t) are given by:

Vi) = VS +wve vt — v b). 3)

Here, the term ITVT — V¥ represents the semantically-aligned displacement field that maps each
source vertex to its corresponding target location. The network W learns to smoothly interpolate this
displacement over time.

Consistent Gaussian Updates. As the mesh vertices V¥ (¢) deform, the positions of the bound
Gaussians f4(t) are updated consistently via the barycentric relationship established in Eq.

3
pg(t) =Y wiVy, (1), (4)
i=1

where V7, (t) are the deformed positions of the vertices of the triangle f to which Gaussian g is
bound. This maintains the tight coupling between the mesh and the Gaussians throughout the entire
morphing sequence.

3.3 MULTI-OBJECTIVE OPTIMIZATION FOR PLAUSIBLE MORPHING

We optimize the correspondence matrix IT and the morphing flow network W using a comprehensive
loss function that balances geometric structure, appearance consistency, and semantic alignment.

Geometric Consistency. To prevent unnatural stretching and distortion, we enforce that the intrin-
sic geometric structure of the surfaces is preserved. We measure this using geodesic distances on the
mesh. To compute the geodesic distance D, (1, j) between any two vertices, we run Dijkstra’s algo-
rithm on a hybrid graph formed by the union of the mesh adjacency graph G,qj (preserving topol-
ogy) and a KNN graph Gy, (adding shortcuts to better approximate Euclidean distances). Further
details are provided in Appendix[A.2] The geodesic distortion loss is then:

Laeo = D7 D32, ®

where D and DT are the geodesic distance matrices for the source and target meshes, and | - ||  is
the Frobenius norm. This loss encourages the correspondence 11 to map regions of the target mesh
back to the source mesh in a way that respects their intrinsic geometry.

To further encourage local rigidity, we add an As-Rigid-As-Possible (ARAP) energy term (Sorkine
& Alexa, 2007), which penalizes non-rigid deformations. We evaluate this over sampled timesteps
during the morph:

Earap = IEtNU[O,l] [Earap(X(t)v X(t + 5t))] ) (6)
where X () is the mesh state at time ¢ and 6t is a small perturbation.

Appearance Consistency. To ensure smooth visual transitions, we introduce a geodesic-aware
smoothness loss on the vertex colors. We first initialize the color of each vertex by averaging the
RGB colors of its bound Gaussians (with SH coefficients evaluated from a canonical viewing di-
rection). The loss then penalizes color differences between adjacent vertices, weighted inversely by
their geodesic distance:

! ' j 2
Esmoo - o C[’Lno t) — Cﬁ]or t ) (7)
" (i,]‘)ZeEadj Dg(l7j> +€ || rph( ) ph( )H2

where FE,q4; is the set of edges in the mesh adjacency graph. This encourages smooth color fields
while allowing for sharp transitions across distant parts of the object.
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Figure 3: Qualitative comparison of morphing methods on the benchmark dataset. Baselines include

DiffMorpher (Zhang et al.,[2024b) and FreeMorph 2025) for image morphing, Neuro-
Morph (Eisenberger et al., 2021) for texture-free 3D shape morphing, and MorphFlow
2022)) for textured multi-view morphing without true geometry. Our method generates textured 3D

morphing with geometric details directly from image inputs.

Our(mesh-only) NeuroMorph  FreeMorph  DiffMorpher  MorphFlow ~ Ours(color shape)

Semantic Alignment Constraint. To ensure the morphing sequence reaches its destination, we add
a terminal constraint that drives the deformed source mesh to the target configuration at the final
timestep:
2
Laign = ||Vt =1) -TIVT| .. ®)
This loss acts as a boundary condition, ensuring that the morph respects the learned semantic corre-
spondences.

Unified Loss Function. Our final objective function is a weighted sum of these components:
Etotal = )\geoﬁgeo + >\arap£arap + >\smoo1h£smooth =+ Aalignﬁaligna (9)

where the A hyperparameters balance the competing objectives of geometric fidelity, structural rigid-
ity, appearance consistency, and semantic alignment.

4 EXPERIMENTS

We conduct comprehensive experiments to validate the ability of our method to produce high-
quality, semantically consistent 3D morphs. We introduce a new benchmark, TexMorph, designed
specifically for this task. Our evaluation protocol includes quantitative comparisons against state-
of-the-art 2D and 3D methods using novel metrics, qualitative analysis of the generated morphing
sequences, and an ablation study to analyze the contributions of our proposed key components.

4.1 EXPERIMENTAL SETUP

TexMorph Benchmark. To rigorously evaluate 3D morphing from multi-view images, we created
a new benchmark named TexMorph (Texture-rich, Morphing-focused). The benchmark is com-
prised of challenging source-target pairs designed to test geometric and appearance transformations.
It includes: (1) high-fidelity synthetic models with complex textures rendered from multiple view-
points; (2) real-world objects captured via 3D scanning; and (3) objects captured in-the-wild using
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Figure 4: Qualitative morphing results with non-isometric deformations, demonstrating robust inter-
polation under challenging geometric conditions (Up: synthetic datas; Middle: real-world scanned
objects from GSO (Downs et al,[2022); Bottom: real-world photos).
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standard mobile phone cameras. The dataset features over ten object categories, including animals,
fruits, and vehicles, providing diverse topological and textural challenges. Further details are pro-
vided in Appendix [A.T]

Evaluation Metrics. Standard metrics for novel-view synthesis are inadequate for evaluating mor-
phing sequences. We thus propose three metrics to assess the spatio-temporal quality of the trans-
formation from source (¢t = 0) to target (t = 1):

* Structural Stability (MSE-SSIM): Measures geometric consistency by computing the Mean
Squared Error of the temporal SSIM scores against an ideal linear trajectory.

1 2 2
£ = N Z(SSIMideal(A7 Gt) - SSIMactual(Aa Gt)) + (SSIMideal(Gta B) - SSIMaCtual(Gta B)) .
teT
(10)
A lower value indicates a more stable transformation with fewer structural artifacts.

* Color Consistency (AF): Assesses appearance smoothness by averaging the perceptual color
difference (AL, ) between corresponding surface points throughout the morph.

AE;, = \/(Li — L) + (a — a3)? + (bf — b3)*. (1)

A lower AFE signifies a smoother transition without color bleeding.

* Edge Integrity (EI): Evaluates silhouette continuity by measuring the temporal stability of the
rendered edge map of object.

EI= NEdges(Canny<I7ﬂowa Thigh)) -1 (12)

A lower score indicates less fragmented edges, suggesting more stable structural transition in the
morphing sequence.

Detailed formulations are available in Appendix[A.3]

Implementation Details. All experiments were conducted on a single NVIDIA RTX A6000 GPU.
For a typical object pair with a mesh of approximately 12,000 faces, the initial hybrid mesh-Gaussian
representation is generated in about 1 hour. The optimization of our morphing framework takes
between 500 and 1000 iterations, depending on mesh complexity. Once trained, generating a full,
high-resolution morphing sequence takes approximately 2 minutes.

4.2 EVALUATION

We perform a comprehensive evaluation of GaussianMorphing against several state-of-the-art 2D
and 3D morphing methods. For 2D baselines, we compare against DiffMorpher
2024b)), a diffusion-based method, and FreeMorph 2025)), a tuning-free approach. For 3D
baselines, we include MorphFlow (Tsai et al.| 2022), which leverages optimal transport for multi-
view transitions, and NeuroMorph (Eisenberger et al., 202T), which computes topology-aligned
shape correspondences.
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Table 1: Quantitative comparison of morphing Figure 5: .USCT study 'results: Comparing our
methods evaluates structural similarity using the Method with the baseline methods in terms of
MSE of SSIM, color consistency with AE, and color consistency, structural similarity, and edge

edge continuity through EL continuity. A higher percentage of participants
preferred our results across all metrics.

Textured Morphing Analysis. Our method excels at producing smooth, high-fidelity texture tran-
sitions, as qualitatively demonstrated in Figure [3] The linear color interpolation of MorphFlow is
inadequate for high-dimensional color spaces, leading to oversmoothed transitions and loss of de-
tail. For example, during the “dog—lion" transformation, it reduces the morph to a simple color
shift, failing to preserve the intricate fur patterns of the lion or the distinct white patches of the dog.
The 2D methods perform poorly on challenging cross-category pairs; DiffMorpher fails in both
geometric and color alignment, while the 2D SOTA, FreeMorph, introduces severe structural arti-
facts (e.g., lizard-like textures) and color oversaturation. In contrast, our approach achieves superior
color fidelity, corroborated by lower A E values (Table[T), and maintains fine-grained texture details
throughout the transformation. Furthermore, as shown in Figured] our method produces smooth and
plausible morphing results even in the presence of significant non-isometric deformations. The in-
terpolated sequences remain visually coherent, demonstrating the robustness of our approach under
challenging geometric conditions. By covering synthetic models, real-world scanned objects from
GSO (Downs et al., [2022)), and photographs of everyday items, the results further highlight the gen-
eralization ability of Gaussian morphing across diverse data sources.

Geometric and Structural Analysis. As shown in Table [I} our method achieves state-of-the-art
structural consistency and edge continuity, primarily due to L., which preserves local geometric
details. For a fair comparison with NeuroMorph, we use the same input meshes for both methods.
NeuroMorph relies on mesh connectivity for geodesic computation making it brittle when handling
fragmented or coarse geometries. Our hybrid graph representation bypasses this dependency, yield-
ing a more robust and efficient solution. Furthermore, our semantic-aware mechanism produces
more plausible deformations, correctly preserving features like the tail in “dog—lion" morphs and
neck details in giraffe morphs, where NeuroMorph falters. MorphFlow suffers from a lack of con-
straints on mesh topology or semantic information, an absence that leads to noticeable edge frag-
mentation and silhouette tearing. By contrast, our topology-aware framework effectively avoids
these issues by leveraging the mesh structure to ensure enhanced edge continuity.

User Study. To validate the perceptual quality of our results, we conducted a user study with 54
participants, who compared outputs of our method against those from DiffMorpher, MorphFlow,
NeuroMorph and the Ablation study. The evaluation focused on four criteria: structural similarity,
texture consistency, edge continuity, and overall preference.The criteria shown below:

 Structural Similarity: Preservation of structure in intermediate frames.

* Texture Consistency: Smooth and natural color transitions without abrupt jumps.

* Edge Continuity: Smooth and continuous edges without breaks or distortions.

* Overall Score: Comprehensive evaluation based on structural similarity, texture consis-

tency, and edge continuity.

Full details are provided in Appendix [A.4] The results show an overwhelming preference for our
method across all metrics. Over 80% of users rated our morphs as superior overall, with particularly
strong and consistent agreement on aspects such as texture consistency and edge continuity. This
perceptual validation confirms that our method generates more visually coherent and high-quality
morphs, aligning with our quantitative experiments.



4.3 ABLATION STUDY

We conducted an ablation study to isolate the contributions of our core components: the mesh-
guided strategy and the geometric distortion loss.
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Figure 6: Ablation Study for mesh-guided strat- . . Lo
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strategy. Bottom: Morphing with the strat-  tionloss. Comparison of morphing results with-
egy, demonstrating its role in achieving edge-  ©Ut (up) and with (below) the geometric distor-

continuous and smooth transitions. tion loss.
Importance of Mesh Guidance.

To evaluate the critical role of mesh guidance in maintaining morphing coherence, we first conducted
a comparative evaluation between two distinct approaches: (1) a variant of our method that removes
mesh guidance, relying solely on point-based morphing, and (2) our full model, which incorporates
mesh guidance by leveraging the complete mesh topology (including vertices, edges, faces, and nor-
mals) to establish a shared correspondence II. As summarized in Table2]and illustrated in Figure|[6]
the point-based variant fails to maintain structural coherence, resulting in significant tearing and
discontinuities along object surfaces, particularly noticeable at edges. Quantitatively, this structural
degradation is reflected in a higher Edge Continuity Index (EI) score of 34.3, indicating poorer per-
formance. The absence of topological guidance also compromises texture quality, leading to blurry
artifacts. In contrast, the mesh-guided approach effectively preserves structural integrity and ensures
smoother transitions by enforcing spatial and textural consistency through the explicit use of mesh
structure.

Role of Geometric Distortion Loss.

Next, we ablate the geometric distor-  Table 2: Mesh-Guided Strategy Ablation: Quantifying edge
tion loss. Without this constraint, the ~ continuity (EI), user-rated transition quality, and texture
morphing process introduces severe preservation (MSE(SSIM)) to validate the importance of

and unnatural deformations, such as  mesh guidance for smooth shape and texture morphing.
the distorted leg geometry shown in

Figure[7] These artifacts not only de-
grade visual quality but also disrupt

Edge Continuity — Texture Quality

the structural plausibility of the in- Ell User? MSE(SSIM){
terpolated shapes, making the transi- w/o Mesh-Guided  34.3 0.02 0.34
tions appear unrealistic. By explic- w/0 Lsmooth - - 0.22
itly penalizing local shape changes, Ours 9.0 0.98 0.11

this loss serves as a key regularizer
that preserves structural integrity, en-
forces geometric continuity, and produces smoother, more plausible transformations. User feedback
corroborates this finding, confirming a marked reduction in visual distortion when the loss is applied.

In summary, these studies demonstrate that the synergy between mesh guidance and geometric dis-
tortion loss is essential for achieving high-fidelity geometric and textural transformations, signifi-
cantly improving geometric continuity and leading to more natural morphing results.

5 CONCLUSION

We introduced GaussianMorphing, a novel semantic-aware framework that unifies 3D shape and
texture morphing from multi-view images. Our key innovation is a mesh-guided Gaussian morphing



strategy that anchors 3D Gaussians to semantic mesh patches. This approach bypasses the need for
pre-aligned 3D assets and ensures that geometry and appearance are interpolated in a structurally
consistent and texturally coherent manner. Through unsupervised learning guided by mesh topology,
our method achieves state-of-the-art performance, outperforming existing 2D and 3D techniques in
structural similarity, color consistency, and edge continuity. By generating efficient and visually
faithful transformations, GaussianMorphing sets a new standard for 3D morphing and opens up new
possibilities for applications in visual effects and digital content creation.
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A APPENDIX

Statements The language of this manuscript was refined with the assistance of a large language
model (LLM). The authors remain fully responsible for the originality, accuracy, and integrity of all
academic content, analyses, and ideas presented in the paper.

A.1 TEXMORPH BENCHMARK

Our new morphing benchmark, TexMorph, leverages high-precision synthetic object models crafted
by artists and 3D object models captured from real scenes, forming a diverse dataset that spans
multiple object categories, all constructed in Blender.

We utilize the Blender NeRF plugin to define a spherical orbit path for an active camera(COS)
around the object. Training frames are rendered by uniformly sampling random camera views ori-
ented toward the center. The dataset includes over ten categories of objects, such as synthetic and
real-world collected (scanning model and photo) fruits, animals, furniture, vehicles, and more(see in
Figure[). We utilize this benchmark to conduct both qualitative and quantitative tests on the base-
lines mentioned below, evaluating the superiority of our method.

Figure 8: Examples of objects from the texmorph dataset, emphasizing the diversity in texture and
structural features for morphing assessment

A.2 GEODESIC DISTANCE APPROXIMATION

Computing exact geodesic distances on meshes is computationally expensive for large-scale mor-
phmg We approximate them using a hybrid graph representation that balances accuracy and effi-
ciency. We construct two complementary graphs: the adjacency graph G,qj ensures topological con-
sistency by connecting face-adjacent vertices, while the KNN graph Gyu, provides local geometric
awareness for improved distance approximation in sparse regions. The adjacency graph G,qj en-
codes face-sharing connectivity:

Gagi = {(vi,v;) | vi, v; share a face in F'}. (13)

The KNN graph Gin, captures local Euclidean proximity:

Gion = {(vi,vj) | d(vi,v;) < NN-distance, ¢ # j}, (14)
where d(-, -) denotes Euclidean distance.
Combining Gyqj and Gy, we construct a hybrid distance matrix Dyg; € R™>™:

d(vi,vj), if (vi,v5) € Gagj U Ginns

15
00, otherwise. (15

Dagi(i, j) = {

13



The geodesic distance D, (i, j) between vertices v; and v; is then computed via Dijkstra’s algorithm:

Delinj) =, min Y Duglvs vesr); (16)
7 (vg o4 ) EP

where P (v;,v;) is the set of all paths between v; and v,.

A.3 EXPERIMENT METRIC DETAILS

For structural similarity, Structural Similarity Index (SSIM) measures the similarity in shape and
structure between the Morphing result and the target,we use MSE (SSIM) to measure the deviation
between the actual SSIM curve and the ideal linear curve. For color consistency, AF is used to
measure the color difference between the source object and target object, ensuring consistency in
color. Finally, for edge continuity, Edge Integrity (EI) evaluates the continuity and completeness of
edges during the shape morphing process, ensuring that the generated structures maintain consistent
and unbroken boundaries.

SSIM for Structural Similarity

To ensure smooth and natural shape transitions during 3D morphing, we measure the Structural
Similarity Index (SSIM) variation across different morphing stages. Ideally, SSIM should change
linearly from the source shape A to the target shape B.

In an ideal scenario, we define the expected SSIM values at any morphing stage ¢ as follows:

SSIMigeal (4, Ge) =1 -1, (17)
SSIMigeal(Gt, B) = t, (18)
where G, represents the intermediate shape at stage ¢. This ensures a smooth, gradual transi-

tion from A to B. For example, at specific morphing stages (At 30%): SSIM (A, Gspy) = 0.7,
SSIM(G3g9, B) = 0.3.

To quantify how closely the actual SSIM values follow the ideal linear transition, we compute the
Mean Squared Error (MSE) for each stage ¢:

1 2 2
£= N Z (SSIMideal(Aa Gt) - SSIMactual(Au Gt)) + (SSIMideal(Gt7 B) - SSIMactual(Gtv B)) (19)

teT

A smaller error indicates that the SSIM variation is nearly linear, reflecting high-quality 3D mor-
phing with smooth transitions and minimal distortion, whereas a larger error suggests anomalous
SSIM changes, potentially indicating irregularities or distortions in the 3D morphing process.

AF for Color Consistenc

We evaluate color consistency using the A E metric in CIELAB space, calculating the average AF
for each frame against the source, target, and adjacent frames. The CIELAB color space is chosen
for its perceptual uniformity, where Euclidean distances correspond more closely to human color
perception compared to RGB space.

The A E metric quantifies the perceptual difference between two colors and is defined as:

AE;, = /(L — L3)? + (af — a3)? + (b — b3)2, 20)

where L* represents lightness (0-100), a* represents the green-red axis, and b* represents the blue-
yellow axis in CIELAB space.

For morphing evaluation, we compute three types of color consistency metrics: source consistency
(AFEource) measuring deviation from the source image, target consistency (AE;,,4c;) evaluating
progression toward the target, and temporal consistency (AEy; ) assessing smoothness between
consecutive frames.
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The final color consistency score is computed as:

1 - _ -
AE; g = g(AEsource + AFEtarget + AEgryr). (21)

Lower AE,,, values indicate better color consistency throughout the morphing sequence.
EI for Edge Continuity

Edge Integrity (EI) quantifies edge fragmentation by counting connected edge components after
Canny edge detection. This metric evaluates structural quality and object boundary preservation in
morphed images. EI is computed as:

El = NEdges (Canny(l> Eow; Thigh)) — 1. (22)

where Ngq4¢5 represents the number of connected edge components, and the subtraction of 1 ex-
cludes the background component. Higher EI values indicate more fragmented edges, suggesting
potential structural artifacts in the morphing sequence.

A.4 USER STUDY

To evaluate the 3D morphing quality from a human perspective, we conducted a user study with 54
participants. Each participant viewed 17 questions on multiple pairs of objects, randomly selected
from our method and three baseline techniques, to evaluate texture and geometric shape compar-
isons, as well as the ablation results of our mesh-guided strategy and geometric distortion loss. They
were asked to select the best set of results based on the following criteria: structural similarity, color
consistency, edge continuity, and overall quality. The questionnaire used in our user study, designed
to evaluate the quality and effectiveness of the morphing results, is shown in the Figure below:

User Study for Morphing

We have generated morphing results at 20%, 40%, 60%, and 80% transformation levels. Please select the
morphing method that best meets the given criteria:

v Structural Similarity

Does the method preserve the structure of the intermediate frames (20%, 40%, 60%, 80%) well?

v Texture Consistency

Do the intermediate frames exhibit smooth and natural color transitions? Are there any abrupt or unnatural
color jumps?

v' Edge Continuity

Are the edges in the intermediate frames smooth and continuous? Are there any breaks, artifacts, or
unnatural edge distortions?

v" Overall Score

Considering “Structural Similarity”, “Texture Consistency”, and “Edge Continuity”, please give an
overall score for the morphing results of this method.

-

»
Morphing
-

} @«

- y
N

Please select the method that you think best achieves the transformation from “dog" to “lion" based on
the following different results.

R Aabada b ¢ SR I I T
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A B

The method with better Structural Similarity during the morphing process is

The method with better Texture Consistency during the morphing process is

The methad with better Edge Continuity during the morphing process is

The method with better Overall Scare is
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Please select the method that you think best achieves the transformation from “dog” to “lion”
based on the following different results.
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Please select the method that you think best achieves the transformation from “cow” to “giraffe”

based on the following different results.
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